COMMISSIONING

Howard Matis – October 13, 2008

GOALS

- A working system at IP1 and IP5
 - Bunch by Bunch relative luminosity
 - Crossing angle
- A tool that CERN operators use

STAGES TO MAXIMUM LHC LUMINOSITY CERN EDMS 347396

Mode	Bunches	Bunch Spacing	Luminosity [cm ⁻² s ⁻¹]	Interactions/ Xsing	Mean pulse height/ occupied bunch Xsing - mV
A–Collision studies with single pilot bunch beam - no crossing angle	1	N/A	2.5×10 ²⁶ - 3.7×10 ²⁷	0.0006-0.092	0.04-0.53
B–Collision studies with single higher intensity bunch - no crossing angle	1	N/A	1.1×10 ²⁹ - 4.3×10 ³⁰	0.27-10.71	16-611
C–Early p-p luminosity	43	2.025 μs	4.8×10 ³⁰ - 8.4×10 ³¹	0.28-4.86	15-277
	2808	25 ns	6.5×10 ³²	0.58	33
	936	75 ns	1.8×10 ³³	4.79	273
D–Nominal p-p luminosity	2808	25 ns	1.0×10^{34}	8.87	506
E—Ultimate p-p luminosity	2808	25 ns	2.3×10 ³⁴	20.39	1163

Pressure = 8 atm - (57 mV for each 7 TeV collision)

BRAN INSTRUMENT COMMISSIONING PLAN

- A-Collision studies with single pilot bunch beam - no crossing angle
 - Collision rate too low to use as a luminosity monitor
 - Minimize noise
 - Get baseline software and hardware ready
 - Study beam background (beam-gas, neutron ...)
- B–Collision studies with single higher intensity bunch - no crossing angle
 - Start in pulse counting mode
 - Transition to pulse height mode
 - Plan for crossing angle algorithms
 - Need sustained presence at CERN
- C–Early p-p luminosity
 - Develop deconvolution algorithms
 - May need deconvolution for this phase

- mplement and test crossing angle algorithms
- Can do pulse counting for most of this period
- Develop pulse height mode algorithms
- D–Nominal p-p luminosity
 - Pulse height mode
 - Deconvolute
 - Detector needs to fully commissioned with gas flow
- E–Ultimate p-p luminosity
 - Might need to lower pressure to reduce voltage

PLAN TO COMMISSION DETECTOR

- Working with Bill Turner to develop plan
- Preparing simulations for a few different collision energies
 - LHC might not start at 7 GeV collisions
 - Fluka and Mars simulations available
- Will evolve based on experience and circumstance

MODEA+B-CIRCULATING BEAM

- Measure noise rates and compare to expected
- Measure interactions
 - beam halo with beam pipe
 - beam gas
 - collimator
- Synchronize DAQ
- Measure for occupied and unoccupied bunches

- pulse height
- pulse shape
- Compare to simulations

MODE C - COLLISIONS

- Synchronize DAQ and LHC clock
- Measure counting rates as a function of measured voltage
- Determine threshold for pulse counting
- Verify bunch pattern

- Compare luminosity
 measurement with other
 detectors
- Analyze beam background
- Develop and test deconvolution algorithms
- Compare to simulations

MODE D-NOMINAL LUMINOSITY

- Transition to pulse height counting mode
 - Compare to counting mode
 - Cross correlate with other luminosity detectors
 - Compare with simulation and expected fill pattern
- Implement crossing angle calculation
 - Test and calibrate with LHC beam

FY09

- Commission detector with beam
- Cross correlate with PMT luminosity system
- Integrate DAQ into LHC control system
- Compare with models

SUMMARY

- Commissioning will continue with each change in LHC operating conditions
 - Since LHC won't reach nominal luminosity, must continue commissioning BRAN in FY10
- Plan dependent on luminosity and fill pattern
- Need simulations at each LHC energy
- Need presence of personnel at CERN
- Will take effort to make BRAN part of LHC beam instrumentation